M.E.T.T.S. logo

M.E.T.T.S. - Consulting Engineers > Technical Innovations and Project Proposals > Solid Waste Combustion with Power Generation

Solid Waste Combustion with Power Generation
A Study of the Potential for Small-Scale Power Plants Using a Mixture of Coal and Bio-fuels

Many areas of South East Asia are energy resource deficient, in terms of major supplies of recoverable fossil fuels. There are however numerous examples of small to medium fossil fuel resources that could not support major plant [100 MW(e) and above] but could provide significant electrical power close to those fuel resources - and often at the peripheries of national power grids. The fossil fuel resources can often be extended by readily available bio-fuels. The fuel resource inventories of these areas can thus be extended beyond the limits set by the economic recovery of fossil fuels alone.
The fossil fuels will include poor and low rank indigenous coals, coal washery rejects, low energy natural gas and recovered and low quality fuel oil. In this paper the emphasis is given to minor coal resources that can be matched with bio-fuels found in the South East Asian region. Examples of resources of bio-fuels are discussed, along with techniques for supplementation. These resources include domestic waste, rice hulls, sugar based stillages, palm oil effluents and bagasse and field waste from sugar farming.
The expertise required in providing the hardware and management for utilising these fuels is described, in the light of some projects that are presently being developed. The role of local people in making such systems work is emphasised, as will economic opportunities arising from such projects.
Indigenous bio-fuels can be a useful and significant source of energy in the developing countries of S. E. Asia. In some situations these fuels will need to be supplemented with local or imported fossil fuels (especially local coal) to maintain an even energy output. Atmospheric fluidised bed combustors are suitable for burning the bio-fuels, allow fuel supplementation, are environmentally friendly and are a technology that is not excessively complex. Conventional grate systems offer advantages in terms of established technology and in many cases increased efficiency. Both these types of combustion should be considered in the light of fuel properties, when choosing a combustion system.
In the attached paper, 'The Potential for Small Scale Power Plants Using a Mixture of Coal and Bio-fuels. Conference: The Third Intra-Asean Coal Workshop and Conference, Cebu City, Philippines October 1992', a generic process description is presented of a major wastes to power study that was carried out in Cebu, Philippines.

Click here to read the article on Solid Waste Combustion with Power Generation

Search this Website:



Radiant Tube Technology
Biodegradable Ordnance
Wastes Processing & Management
Spontaneous Combustion of Coal

Bataan Nuclear Reactor: Conversion Options to Fossil Fuel
Conversion of Oil Fired Power Stations to Coal
Solid Waste Combustion with Power Generation
Gas-to-Liquids with Power Co-Production

NEW! Helium: Next Mineral to Boom in Australia?
Energy Security in Australia
Low Rank Coal/Lignite Upgrading Technologies
Cleaning UCG Synthesis Gas
GTL and CTL: New Energy Resources for Australia
Lignite: A New, Dedicated Approach
Carbon Capture and Storage
Power Generation Systems & Reliable Supply
LNG Carbon Footprints and CDM
Hybrid VAM and Coal Waste Fired Power Generation
Clean Coal Technology & Enhanced Oil Recovery

UCG-CSM Interrelationships and Synergies
Business Continuity Management and the Terrorist Threat
The Missing Link in Clean Coal Technology
The Realities of Solutions to the Energy Question
Energy for and from the Northern Territory (Australia)
Countering Terrorism Using Risk Management Tools
Engineering and Terrorism
Desalination and Power Generation
Full List of White Papers



M.E.T.T.S. Pty. Ltd. - Consulting Engineers
PO Box 843, Helensvale QLD 4212, Australia
TEL: (07) 5502 8093 • (Int'l) +61-7-5502 8093
EMAIL: metts[at]metts.com.au

CopyrightPrivacyTerms of Use
© 1999-2014 M.E.T.T.S. Pty. Ltd. All Rights Reserved.